
AD-A258 905111I1N11|1

AFIT/GCS/ENG/92D-18

DTIC
S ELECTE

JAN8 1993D

C

METHODS FOR VIEWING
RADAR CROSS SECTION DATA

IN THREE DIMENSIONS

THESIS

David Jesse Tisdale
Captain, USAF

AFIT/GCS/ENG/92D-18

Approved for public release; distribution unlimited

93-00067,j
. r.• o, ;•r.. NHNNIII'1)

AFIT/GCS/ENG/92D-18

METHODS FOR VIEWING

RADAR CROSS SECTION DATA

IN THREE DIMENSIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

DTIC QUALITY INSPECTED 5

David Jesse Tisdale, B.S.

Captain, USAF
AceassLm for

NT7I S A"M

December, 1992 " 0
Uobnuone 4 []

SJuw t, I f i.•at I m

Approved for public release; distribution unlimited jAvaitab 11 t. Codes
iAv. 1 -nd/or

Dist Special

TABLE OF CONTENTS

TABLE OF CONTENTS ... ii

LIST O F ILLUSTRATIO NS .. vi

LIST O F TABLES .. vii

ACKNOW LEDG M ENTS .. viii

ABSTRACT ... ix

I. INTRO DUCTIO N .. 1

1.1 Background ... 1

1.2 Problem. 5

1.4 Scope and Lim itations .. 6

1.5 Approach ... 6

1.6 Thesis Overview .. 7

II. SYSTEM DESIG N ... 8

2.1 Introduction ... 8

2.2 Particle Systems .. 8

2.2.1 Background ... 8

2.2.2 System Design .. 9

2.2.3 System Implementation .. 11

2.3 Volum e Renderer .. 12

2.3.1 Background ... 12

2.3.2 System Design .. 13

2.3.3 System Implementation .. 14

2.4 Surface Rendering .. 15

2.4.1 Background ... 15

ii

2,5 Data Preprocessing ... 16

2.6 Sum m ary .. 17

II1. RESULTS ... 18

3.1 Introduction ... 18

3.2 Particle System Renderer ... 18

3.3 Volume Renderer .. 20

3.4 Sum mary .. 21

IV. CONCLUSIO NS .. 31

4.1 Particle Systems .. 31

4.2 Volum e Rendering Systems .. 32

4.3 Future W ork ... 33

Appendix A. Data Preprocessor User's Guide ... 35

A. 1 Introduction ... 35

A.2 Installing The Filter ... 35

A.3 Using the Filter .. 36

A.3.1 Com mand Line Entries ... 36

A.3.2 Differences for MAPFilter ... 36

A.4 Conclusion ... 37

APPENDIX B Using PSR .. 38

B. 1 Introduction ... 38

B.2 Installing .. 38

B.3 Using PSR ... 38

B.3.1 Centroids ... 39

B.3.1.1 Axis .. 39

B.3.1.2 Shape ... 39

iii

B.3.1.3 Color .. 39

B.3.1.4 Diameter ... 39

B.3.1.5 Origin .. 39

B.3.2 Particles ... 40

B.3.2.1 Color .. 40

B.3.2.2 Diameter ... 40

B.3.2.3 Origin .. 40

B.3.2.4 Fade Time ... 40

B.3.2.5 Tail Length .. 40

B.3.2.6 Direction ... 41

B.3.2.7 Time of Death ... 41

B.3.2.8 Time of Spawn ... 41

B.3.2.9 Spawn From .. 41

B.3.2.10 Velocity ... 41

B.3.2.11 Intensity .. 42

B.3.3 The Environment ... 42

B.3.3.1 Am bient Color ... 42

B.3.3.2 Viewport ... 42

B.3.3.3 W orld .. 42

B.3.3.4 View .. 42

B.3.3.5 Time Increment ... 42

B.3.3.6 View Changes .. 43

B.3.4 Im plementation ... 43

B.3.4.1 File Formats .. 43

B.4 Sam ple Control File ... 43

iv

B.5 Sam ple Data File .. 45

B.6 Com m and Line Options .. 46

B.7 Sum m ary .. 46

Appendix C. Using VIPER and MAP ... 47

C.1 Introduction ... 47

C.2 Software Installation ... 47

C.3 Running MAP .. 47

C.4 USER CONFIGURABLE PARAMETERS 48

C.5 M AP EXAM PLE .. 49

C.6 Using VIPER .. 50

C.6.1 Feedback ... 50

C.6.2 Scaling .. 51

C.6.3 Volum e Trim m ing ... 51

C.6.4 O bject Distances ... 51

C.6.5 Data O rientation ... 51

C.6.6 Changing the View Plane Dimensions 51

C.6.7 Am bient Light Level ... 51

C.6.7 Num ber of Light Sources ... 52

C.6.8 Target Values .. 52

C.6.9 Border M atte .. 52

C.6.10 Repeating the Session ... 52

C.7 Sam ple Com m and Line .. 52

C.8 Sum m ary ... 53

BIBLIO G RAPHY ... 54

V ita .. 5 6

V

LIST OF ILLUSTRATIONS

Figure Page

1. Typical Polar P lot 2

2. Algorithm for Particle Generation 10

3. View Coordinate System ... 11

4. Spherical Coordinate System .. 15

5. W Polarity Unfiltered Data Viewed From the X axis 22

6. W Polarity Unfiltered Data Viewed From the Y axis 22

7. W Polarity Unfiltered Data Viewed From the Z axis 23

8. HH Polarity Unfiltered Data Viewed From the X axis 23

9. HH Polarity Unfiltered Data Viewed From the Y axis 24

10. HH Polarity Unfiltered Data Viewed From the Z axis 24

11. Crosspole Unfiltered Data Viewed From The X Axis 25

12. Crosspole Unfiltered Data Viewed From The Y Axis 25

13. Crosspole Unfiltered Data Viewed From The Z Axis 26

14. Multi-polarity Data Viewed From The X Axis .. 26

15. Multi-polarity Data Viewed From the Y axis .. 27

16. Multi-Polarity Data Viewed From the Nose ... 27

17. Multi-Polarity Data Viewed From the Tail ... 28

18. Multi-Polarity Data Viewed On Sony PVM-2030 Monitor 28

19. Multi-Polarity Data Viewed On Square Monitor 29

20. Multi-Polarity VIPER Image Viewed From the X axis 29

21. Multi-Polarity VIPER Image Viewed From the Y axis 30

22. Multi-Polarity VIPER Image Viewed From the Z axis 30

vi

LIST OF TABLES

Table Page

Table 1. Control File Syntax .. 44

Table 2. Data File Syntax .. 45

vii

ACKNOWLEDGMENTS

I would like to thank all of the people who made it possible for me to finish my work

here at AFIT and provided support along the way. The order of their acknowledgment

in no way indicates their contribution or significance, they each helped in their own

ways.

First, I'd like to thank my thesis advisor, Lt Col Marty Stytz, for his help throughout

this thesis effort. Without his guidance and encouragement, this study would have

been substantially diminished in its scope.

I'd also like to thank Lt Col Phil Ambum, who provided many fun and challenging

hours in graphics research. His enjoyment of graphics always provided an inspiration,

and he was invariably there with fresh insight when I needed it.

Special thanks go to Dr. Andy Terzuoli who helped me understand and explain

electromagnetics in terms appropriate to this effort.

Finally, I would like to thank the friends I have made here at school as well as those

I knew prior to AFIT, but were there to provide support and encouragement the last

eighteen months. I know you've put up with a lot, and I appreciate it. This thesis is

dedicated to Max and Saetee. Thank you for all you have given me.

viii

ABSTRACT

Radar Cross Section data is an important factor in the design of modern fighter and

bomber aircraft. Minimization of the reflected radar energy is one of the key issues

when choosing shapes and materials in new aircraft. Visualization of the energy

scattered back to a radar is neither intuitive nor easy. The mission planner and pilot

need to gain an understanding of the vulnerabilities inherent in the design of the

systems they use. The advent of relatively low cost graphics workstations has made

their use affordable in applications inconceivable only a few short years ago.

This thesis examines three graphics rendering techniques and their applicability to

the display of three-dimensional radar cross section data. This study looks at three

tools, PSR, a particle system renderer; the Satellite Modeler, a three-dimensional

surface renderer; and VIPER, a volumetric renderer for their applicability, utility, and

ease of use in the display of radar cross section data.

Each of the systems was tested using the same data set, and the results compared

later in this treatise. Although the purpose of this study is to determine the applicability

of different techniques, the results can be used to further develop fast, efficient

rendering systems for the visualization of radar cross section data.

ix

METHODS FOR VIEWING
RADAR CROSS SECTION DATA

IN THREE DIMENSIONS

I. INTRODUCTION

1.1 Background.

One of the key factors in the design of modern aircraft is the application of stealth or

low observable (LO) technology. The purpose of this technology is to reduce the

chance of detection and increase survivability of an aircraft while in hostile airspace.

Three recent airplanes incorporating stealth technology are the B-2 bomber, the F-22

fighter and the F-1 17 stealth fighter. The skins of all three aircraft are composed of a

myriad of surface shapes and materials designed to reduce their Radar Cross Section

(RCS).

The study and analysis of radar cross section data are important in both the design

and deployment phases of military aircraft. While still in the conceptual phase, aircraft

designs must minimize reflected radar energy, while at the same time, maximize

performance characteristics. During the operational phase, the mission planners must

take into account the vulnerability generated by the aircraft's radar cross section in

relation to threat systems when routing sorties.

Two factors affecting the amount of energy reflected back to a radar and hence the

RCS are the frequency of the pulse and the polarity of the wave with respect to the

antenna. The frequency of the pulse varies greatly among the different radar systems,

with the centers of the five major radar bands at 38 GHz for the Ka band, 15 GHz for

the Ku band, 10 GHz for X band, 6 GHz for C band and 3 GHz for S band radar [Sti

83]. Polarity can take one of four cases, Horizontal-Horizontal (HH), Vertical-Vertical

(W), Horizontal-Vertical (HV), or Vertical-Horizontal(VH). Each of these pairs refers to

the orientation of the transmitting antenna and the orientation of the receiving antenna.

The term crosspole describes those cases where the transmitting antenna and

receiving antenna are in different orientations (HV and VH). Traditionally, the radar

cross section for an object is expressed either as a value in decibel meters squared

(dBsm) or displayed in a two-dimensional polar plot. When examining RCS values, the

lower the value, the lesser chance of detection for that orientation of the target and

frequency of the radar. The polar plot shows the relative strengths of the RCS return

for a specific orientation and configuration of a platform. Figure 1 shows a typical two-

dimensional polar plot. A single polar plot or value is insufficient to represent the RCS

of a target, since an RCS value or polar plot is only valid for the frequency for which it

was generated and its polarization. The typical non-engineer has little use for either of

I ~I

Figure 1. Typical Polar Plot

2

these formats, and generally is unable to incorporate the RCS information during

mission planning.

RCS is the ratio of the power of the radio waves that a target reflects (scatters) back

in the direction of the radar to the power density of the radar's transmitted power. RCS

accounts for cross section of the target, as well as reflectivity, and directivity, and may

be used to predict the signal energy returned back to a radar. Reflectivity is the term

for the fraction of the intercepted power reradiated (scattered) by the target [Sti 83].

Directivity is ratio of the power scattered back in the direction of the radar to the power

that would have been scattered back if the reflection had been uniform in all directions

(isotropic) [Sti 83]. RCS does not account for environmental factors such as ionization,

humidity, or static. Each of these factors may alter the amount of energy reflected back

to the radar receiver, affected the perceived target. Stimson [Sti 83] defines Radar

Cross Section (a) in equation 1.

a= 4;r lim R2 E2 12
(1)

where:

Es = the energy scattered back to the radar

El = the power density function of the energy incident on the target

RCS directly affects the amount of energy returned to the radar receiver. The more

energy received by the antenna, the greater chance of detecting and identifying a

target. In equation 2, Balanis [Bal 1989] defines the energy returned to the radar in

terms of the average transmitted power, the time the energy is actually on the target,

the range to the target, the effective area of the antenna, and the gain of the antenna.

3

Energy)2 P. ý,g G aA. T., (2)44x R

where:

PavQ = the average transmitted power

Tot the time on target

R the range to the target

Ae the effective area of the antenna

G antenna gain

Sweetman states that RCS is determined by first measuring, or calculating the amount

of radar energy reflected toward an observer from the target. The designer then

calculates the size of a sphere that would reflect the same amount of energy. The area

of the calculated sphere is the RCS [Swe 86]. The key to LO technology is the

minimization of the energy reflected from the target back to the radar receiver. Since

the RCS (a) of the target is in the numerator of the equation, a value of zero for RCS

would reduce the returned energy to zero. Although this would be the ideal situation,

design of components such as engines, wings, and fuselage for minimum RCS must be

compromised with design for performance. In order to view the RCS of an entire

airborne platform with 0.5 degree resolution, 360 separate polar plots would be

required for each frequency of interest. It is unreasonable to assume anyone could

deal with this volume of information for multiple frequencies or multiple configurations.

Viewing large and complex data sets such as RCS data is the basis of scientific

visualization. Scientific visualization incorporates not only the application of scientific

and engineering techniques to graphics, but also includes database theory, animation,

simulation techniques, and signal processing [Fol 90]. Some or all of these fields may

be necessary to display scientific and engineering data. Some of the ongoing research

4

areas in scientific visualization include medical data imaging, flow field visualization,

electron density visualization, chemistry, astrophysics, and the geosciences.

Volume visualization describes the series of techniques for displaying three

dimensional data in two dimensions. Volume visualization techniques have traditionally

been divided into volume rendering techniques and surface rendering techniques.

Surface rendering is the group of techniques used to display the three dimensional

data as a shell, or surface of data. Volume visualization describes the group of

techniques that display the volumetric data as multiple shells or surfaces. For further

readings on scientific visualization techniques, see [Udu 91], [Kau 91], and [Sty 91].

1.2 Problem.

The purpose of this study was to determine if state of the art rendering techniques

could be used to display Radar Cross Section data. This study was not intended to find

the best method of rendering RCS data, nor was it intended to finesse any one method

to increase efficiency or speed up rendering time. I examine three techniques for

rendering three dimensional data, and determine their applicability to rendering single

frequency (monolithic) RCS data.

1.3 Assumptions.

Conceptually, there are three major techniques for rendering three dimensional (3D)

data: particle systems, volume rendering, and surface rendering. Each of these

techniques has found its way to the low-end of computer graphics hardware. Since all

three techniques are currently in use on typical microcomputer systems, I examined

each method for applicability for rendering RCS data. Researchers at Ohio State

University generated the data used in this study with its Radar Cross Section - Basic

Scattering Code (RCS-BSC) [Mar 901 and a model of a fighter aircraft. Although the

data set is unclassified, it is an accurate representation of RCS data currently in use. It

5

is important to note that this study was not limited to real-time manipulation and

rendering of the data due to the large size of the data sets.

1.4 Scope and Limitations.

This focus of this study is the applicability of common 3D rendering techniques to

radar cross section data. Because of the size of the data set, and the different data

format requirements of each of the rendering systems, format converters and filters

were constructed to feed existing radar cross section data into each of three different

rendering systems, and reduce the number of raw data points. The results are

presented to the reader later in this document for evaluation. The author makes no

judgment as to the best technique for a users particular application.

1.5 Approach.

The first step in completing this research was the literature review. Because this is

a cross-discipline research project, the literature review included both methods for the

generation of radar cross section data and techniques for the rendering of three

dimensional, volumetric data. The review was performed to determine the current state

in both electromagnetic studies and computer graphics.

The second step was the construction of a general purpose particle system

renderer. Since application of radar cross section data to a particle system is one of

the major research areas of my thesis, a flexible particle system renderer was needed.

The design for the particle system renderer was based on the description given by

Reeves (Ree 83]. The code was written using AT&T C++ version 2.1, and was

designed with portability and flexibility as primary considerations. Because the AT&T

C++ translator is the most restrictive of the C++ compilers or translators available, code

that compiles with it should compile with only modest changes on other systems or with

6

other C++ compilers. The third step was the construction of a general purpose filter for

the radar cross section data. A typical data file contains over one million data points,

describing only one half of the object being tested, requiring the filter to be both flexible

and accurate. After construction of the initial filter, the filtered data was formatted for

each of the rendering systems. The formatting software was written in C++ and hosted

on the Silicon Graphics 4D44ONGXT workstations in the AFIT Graphics Lab.

After formatting the data, it was rendered by each of the three rendering systems.

The results for the different systems are compared and evaluated later in this

document.

1.6 Thesis Overview.

The remainder of this document is organized as follows: Chapter 2 is the design

and implementation of the three different rendering techniques, Chapter 3 discusses

the results of the study, and Chapter 4 contains my conclusions and recommendations.

7

II. SYSTEM DESIGN

2.1 Introduction

Evaluation of the different techniques for rendering RCS data was an iterative

process of design, development, implementation and testing. The particle system

renderer was the first technique examined, followed by the volume renderers.

Concurrent with this research, Wojszynski [Woj 92] examined surface renderers for use

in scientific visualization of RCS data.

This chapter discusses the three techniques evaluated for rendering RCS data. For

particle systems and volume rendering, the background of the technique is discussed,

development issues are described, and implementation details are noted. The third

section summarizes the work of Wojszynski, and the fourth section examines the data

preprocessing.

2.2 Particle Systems.

2.2.1 Background.

Particle system renderers are typically used to model environments whose

appearance change over time. The characteristics tracked in each particle include

color, velocity, particle lifetime, and tail length. One or more equations describe the

velocity of the particle, and generally take into account gravity, starting velocity, starting

position and direction of travel to generate realistic effects. The lifetime property of the

particle describes the length of time a particle is visible, and additional information such

as the spawning time, spawn source and system time track the particle's ability to

8

spawn children. Since a particle is normally represented by a single point, a tail length

helps simulate the blurring of a moving object by adding additional visual queues [Kor

83]. The types of objects modeled by particle systems include both dynamic and static

systems. Probably the most viewed example of a particle system was shown in the

Genesis Demo Sequence [Smi 82] from the movie Star Trek IU. The Wrath of Khan

[Par 82]. William Reeves describes the generation of the wall of fire used in the

sequence in his 1983 SIGGRAPH article [Ree 83]. Other applications of particle

systems discussed by Reeves in his article are generation of fireworks and explosions

in cinematography [Ree 83]. Other environments modeled by particle systems include

fog, mist, and other diffuse media [Fol 90]. A unique applicatio,, of particle systems to

static models is Reeves and Blau's rendering of trees and grass in a forest [Ree 85].

For the trees, the random characteristics of the particle system determined placement,

length and direction of growth for the branches and twigs. The random characteristics

of the particle system also generate the placement, length and curve of the blades of

grass. Nature is not normally symmetric, and the randomness of the particle generator

removed the synthetic look common to traditionally generated images. The drawback

of applying the particle system to new fields is each application generally requires the

development of a new model.

Because particle systems do not attempt to map data points onto a surface, but

display each input data point as a member of the overall system, I felt this technique

might have potential in the display of robust, vectorized data sets. No additional

overhead is required for surface fitting computations, and no bias is introduced to the

data set from interpolation of the data set.

2.2.2 System Design.

The main purpose of the particle system developed for this research is a portable

platform for the generation of a frame by frame depiction of an environment for use in

9

video recording and playback. The animation provided by the video playback provides

the user with additional three-dimensional queues for analysis of the data. The system

was not designed for interactive display and manipulation of the frames. The system

uses the Utah Raster Toolkit [Tho 86] for generation and storage of the frames, and

was designed to run on a graphics workstation with at least 16 megabyte of memory.

The Utah Raster Toolkit stores color images using the Utah run length encoded (RLE)

format for the data. The RLE format was designed for efficiency and device

independence [Tho 86]. The modularity of object oriented design in C++ combined with

the portability of the Utah Raster Toolkit insures a portable, flexible rendering system.

The basic algorithm for implementing the particle system is contained in figure 2.

For each particle:
Check for spawning
If spawning

Generate new system
Check for death of particle
If particle is dead

Mark and ignore
Move Particle

Render Particles
Increment time step

Figure 2. Algorithm for Particle Generation

To keep the particle rendering system portable, I chose not to implement an

interactive user interface. Instead, the system was designed to read and parse

standardized data and configuration files at run time, and Appendix B contains the

format for these.

All particles are generated from a central or base object known as a centroid. The

user selects the shape of the centroid prior to rendering as an option in the data file.

For the RCS data, a spherical centroid was chosen since it best represents the center

of a spherical coordinate system. The user also specifies the placement (origin) of the

10

centroid in world coordinates and the coordinate system type, either spherical or

cartesian. Particles and their respective centroid are stored in a dynamic linked list. At

each time step, the list is first checked for new particles being spawned. The new

particles are generated, and added to the linked list structure. The list is then checked

for particles that have died. Dead particles are marked as such, and no longer

displayed. The control file also allows the user to set, then change the view of the

overall system. This feature allows the view to be changed during the rendering of the

particle system. The user can select whether the particle system continues to grow, or

freezes during the view change.

2.2.3 System Implementation.

The view volume requires specification of a viewers position (PRP), where the

camera is looking (CW), a view plane normal (VPN), and a view up vector (VUP). See

figure 2 for the coordinate system. This view is based on the three-dimensional view

coordinate system described by Foley [Fol 90]. The user must also specify viewport

dimensions for rendering, and world limits (including front and back) for clipping.

VUPlyv

PRP•
S~x u

VRP

g,n

Figure 3. View Coordinate System

11

The particle system renderer generates images using a Z-Buffer and Wu antialiased

lines [Wu 87]. The Wu antialiased lines are drawn by incrementing one pixel at a time

along the major (longer) axis. For each increment in the major axis, two pixels are

drawn bracketing the axis. The intensity of the pixels are determined by their distance

from the actual line. The Wu method for generating lines was chosen for its simplicity,

accuracy, and efficiency. The particle system renderer generates either static or

rpndom particle systems, as determined by the user. Because the RCS data was

mapped to specific locations, the random particle placement was not used. After

viewing several images generated from the RCS data set, I determined the resulting

images lacked sufficient cues for the volumetric nature of the data. This issue was

addressed by animating the development of the particle system over time. A feature

added to the particle rendering system was the ability to change the user's view,

including rotation around any of the three axis while the particle system is growing.

The user also has the option of stopping the particle system growth while the view

changes, and can specify the number of frames to spread the view change over.

During the taping of the frames to generate the final animated images, this feature

provided a smooth panning of the view, rather than an abrupt change in the image.

2.3 Volume Renderer

2.3.1 Background.

Stytz defines volume rendering as displaying multiple surfaces or an entire volume

and presenting the user with the visualization of the entire space [Sty 91]. Three of the

more common volume rendering techniques are ray casting, V-buffer and splatting.

Ray casting is a technique where a vector (ray) traces through the volume of data. A

ray is fired from each pixel through the volume of data. Ray casting algorithms conduct

12

an image-order traversal of the image plane. Similar to ray tracing, the ray

accumulates color and opacity until the end of the data volume is reached. It differs

from ray tracing in that the ray is not deflected or refracted as it passes through the

volume. Descriptions of ray casting algorithms can be found in [Ups 881, [Lev 88] and

[Lev 90]. Upson's [Ups 88] V-buffer technique is a front to back, object-order rendering

technique where the ray accumulates color and opacity as it passes through the

volume. The ray stops when it exits the volume, or an opacity of one is reached.

Splatting [Wes 90] is an algorithm which also performs a front to back, object-order

traversal of the volume. Lookup tables are used to calculate and composite the

contribution of each voxel to the view. The disadvantage to most volumetric data sets

is that the data is not continuous. Care must be taken when mapping the data set to a

regular grid to avoid aliasing the data. The key feature of volume rendering is that all

of the data is used, not just the surface information.

2.3.2 System Design.

I examined the Volumetric Imagery Program for Engineering Research (VIPER)

system developed by Bridges [Bri 88] as the Volume Renderer for displaying the RCS

data. VIPER was designed to be a flexible and portable volume rendering system for

use in Computational Fluid Dynamics (CFD). This system was written using C and the

Utah Raster Tool kit. Another key feature of VIPER is its extensive user interface for

environmental setup and image construction. In order to run VIPER using a non-

regular data set, a front-end processor was needed. Fortunately, Lentz [Len 89]

developed a VIPER pre-processor for use with irregularly spaced CFD data. Lentz's

front end processor, MAP, was designed to compute regularly spaced values for mach

and pressure numbers. The input data coordinates are read into separate lists in

memory, then searched for the minimum and maximum values. The data set

13

coordinates are then normalized using the number of planes specified by the user. The

system defaults to 100 planes for each axis. The grid coordinates are interpolated to

generate points in the new planes generated by MAP. After the new points are

generated, the data set is filtered for manageability. Using MAP developed by Lentz as

a starting point, I was able to map the RCS data into a regular grid for use in VIPER.

The data output by MAP was plotted to determine the validity of the interpolation. In

order to use the RCS data in the volume renderer, each polarity of the data was

assigned a distinct scalar value. The initial results were unacceptable due to a poor

choice of values. Closely spaced values, and values close to zero were found to

significantly bias the final results. A spacing of 50 units was found to be sufficient to

produce an accurate representation of the initial data set.

2.3.3 System Implementation.

MAP uses trilinear interpolation to map non-regular data onto a rectangular grid

coordinate. The first modification I made to MAP was the alteration of the input and

processing sections to accept the X, Y, Z, Value format of the RCS data set.

Additionally, I modified MAP to allow processing of data sets other than mach values

and pressure numbers. I then modified the filter for the raw RCS data set to convert

the spherical coordinate system data to cartesian coordinate system data. The filter

also translated all of the coordinates to the positive axis and passed the data through a

high pass and low pass filter. The filtered data was stored as two files in binary format,

one containing the coordinate values and the second containing the data values. The

coordinates were generated using phi and theta as the basis for X and Y and the

strength of the RCS return was used to generate the radius value for Z. Figure 4

shows the spherical coordinate system used in this design. The data values were

generated by assigning a different scalar value to each of the polarities of the RCS

14

z

phi ra

/ theta

Figure 4. Spherical Coordinate System

data. Vertical polarity (W) and Horizontal polarities (HH) were given unique values,

while both crosspole polarities (HV and VH) were given the same scalar weight, as

they are a minor contribution to the overall data set. As with the particle system, this

gives the cross-pole data a reasonable contribution to the final image.

2.4 Surface Rendering

2.4.1 Background

Surface rendering is concerned with generating a smooth image of a single surface

from a discrete data set [Cli 88]. Although they are both methods of volume

visualization, surface rendering differs from volume rendering in that it is only

concerned with rendering a single shell of data. The shell is rendered as a continuous

surface, with different techniques employed to create a closed data set. Of all the

surface rendering techniques available, bicubic fit, polygonal-mesh, and convex hull

techniques appear to be most useful for visualizing RCS data. The bicubic fit is applied

to polynomials that are cubic in both parameters. Bicubic surfaces are joined through

15

iterative evaluation of the surfaces to be joined. Recursive subdivision of the surfaces

is necessary to eliminate cracking [Lan 79]. In the polygonal-mesh technique, a

polygon mesh or net is applied to the discrete data points to approximate a smooth

surface. A polygon mesh is a collection of edges, vertices, and polygons connected

such that each edge is shared by at most two polygons [Fol 90]. Then the mesh is

displayed as a combination of filled and outlined polygons, with shading applied to

smooth the edges. Convex hull techniques describe the family of techniques that treat

the surface to be rendered as a collection of convex points. Again, adaptive

subdivision and interpolation are used to generate, smooth, realistic surfaces. For

more information on surface rendering techniques using the Satellite Modeling System

[Pon 92], see Wojszynski [Woj 92].

2.5 Data Preprocessing.

This section describes the data filters built to support rendering of the RCS data for

the volume and particle rendering systems. The RCS data filter was used to convert

the raw data files provided by Ohio State University into a format usable by the different

rendering systems. The file header contains the spacing of the measurements taken,

the frequency at which they were taken, and format specifications. On the basis of this

information, the filter extracts the data into spherical coordinates. The primary data of

concern is the phi (+) and theta (0) of the measurement, and the strength of the return

for the four polarities, and the phase of the returned signal is available to the filter.

The raw data set is stored in two files, one containing the top of the model and the

second containing the bottom of the model. Both files must be read by the filter to

process the entire data set. The data contains measurements for only the first 180

degrees of the model with the front of the model at zero degrees. Symmetry is

assumed along the longitudinal axis. Based on this symmetry, the filter generates data

16

for the full 360 degrees and processes both the top and bottom data files, creating a

data set for the complete model in a single data file. Each rendering technique

required a different version of the filter, as the input files for each renderer were

incompatible with the others. Keywords were added to the output for the particle

system, and the volume renderer required conversion of the spherical coordinates to

the cartesian coordinate system, and the data in binary format. All versions of the

digital filter contained the ability to shift the data into the positive coordinate system,

and pass the data through a high pass filter and a low pass filter. The thresholds of the

filters are selected by the user when the raw data file is processed.

2.6 Summary

This chapter presented in detail the software development for the particle system,

the volume renderer with its associated front-end processor, and the data

preprocessor. Concentration was on the particle system renderer since it was original

work developed for this application. With an understanding of the design process in

place, the next chapter discusses the results from the particle system renderer and the

volume renderer.

17

III. RESULTS

3.1 Introduction

The goal of this research was to determine if graphics rendering techniques could

be used to display RCS data. It was not the purpose of this research to determine

which filter values best represented the overall data set, nor was the purpose of this

research to identify areas of potential design flaws in the data sets examined.

Research in these areas is left to those specializing in electromagnetics.

The primary purpose of this study was generating accurate, 3D images of the data

sets provided. An image was considered acceptable if it accurately displayed the

relative magnitude and polarity of the data with respect to the origin of the object

without aliasing. This chapter presents the results of each of the three rendering

systems, as well as an analysis of the applicability of each method.

3.2 Particle System Renderer.

The particle system renderer allowed me to display the RCS data with the least

amount of filtering and data manipulation. To establish the coordinates of the particle,

the phi and theta of the value in the RCS data were used as the phi and theta of the

particle. The value for rad was set to zero for all particles. This placed the starting

point of all the particles in a sphere around the centroid. All particles started at the

same time, and the strength of the RCS return was used for the velocity of the particle.

The color of the particle was determined by the polarity of the data. The first data set

rendered by the system was the W polarity data. During the prototyping phase of the

development, the data was processed through the band pass filters with the low pass

18

filter set with 20 decibels per square meter (dBsm) as the lower threshold and the high

pass filter set at 65 dBsm as the upper threshold. With this data set, these filter values

display both the low return areas and the high strength return areas with a reduced

number of data points. These values may change with each new data set, and

appropriate values should be determined by inspection of the raw data set. Figures 5,

6 and 7 show the results of the original data set along each of the three axis. The

figures show only the W polarity data, with the particle color set to red. The data was

passed through the preprocessor with both the high pass and low pass filter limits set

to 0. Setting both filters to the same value passes the entire data set to the output files.

Figures 8, 9, and 10 show the results of the HH polarity data along each of the three

axis. The data was passed through the preprocessor with both the high pass and low

pass filter limits set to 0, and the particle color was set to blue. Figures 11, 12, and 13

show the results of the HV and VH polarity data along each of the three axis. The data

was passed through the preprocessor with both the high pass and low pass filter limits

set to 0. The particle color for both the HV and VH data sets were set to green. After

the successful rendering of single polarity data, the raw data was run through the

preprocessor a second time to generate a data set containing all four polarities, and

figures 14, 15, 16, and 17 show the results of this attempt. Figure 16 shows the view

from the nose of the target, while figure 17 shows the view from the tail of the target.

For this data file, there was a noticeable contribution from the crosspole data to the

nose-on view of the aircraft. For each of the multi-polarity images, the low pass filter

was set to 0, and the high pass filter was set to 70. These values were chosen to

reduce the final size of the data set for rendering without compromising the resulting

image. After rendering the data as a series of still images, a video tape was made of

the particle system growing from the centroid to a maximum value, rotating around each

of the three axis, one at a time, to give the viewer a better sense of the volumetric

19

nature of the data. The final tape lasted about three minutes, took 1900 separate

images, and required six hours to record. Rendering the final data set required 10

minutes to load the data files, and new frames were produced approximately every 95

seconds. One problem noted in the recording was the significant loss of resolution

when transferring the image to tape, and then displaying it on NTSC monitors. As the

resolution decreases, the data tends to blur together, potentially masking areas of

interest. A second problem noted was the lack of standard aspect ratios in the NTSC

color monitors. The "look" of the RCS data set is significantly altered by minor changes

in the aspect ratio of the monitors. When the aspect ratio changes, the resulting image

may falsely indicate areas as having large returns, while hiding areas which do. Figure

18 shows an image on the Sony PVM-2030 NTSC graphics monitor, and figure 19

shows the same image on a square NTSC monitor. The final tape provided the user

with a good, intuitive feel for the data and its areas of interest.

3.3 Volume Renderer.

The images generated with the volume renderer VIPER did not allow real-time

manipulation by the user. Several images could be generated interactively by VIPER

through command line entries, however, the resulting images were written into

individual RLE files. This removed the overhead of reading the data set for each image

if the user knew what parameters to select prior to executing VIPER. Figures 20, 21,

and 22 show an image generated by VIPER, viewed along each of the three axis. The

data for these images was filtered at 20 dBsm for the lower threshold and 100 dBsm for

the upper threshold. One of the problems encountered by VIPER was the time required

by the preprocessor MAP. An image containing 430,00 data points required over 27

days of CPU time on a Silicon Graphics 4D/440 VGXT workstation to process. The

algorithms employed by MAP are order N5 , resulting in significant increases in

20

processor time for minor increases in data set size. Due to the nature of the trilinear

interpolation designed into MAP, reduction of the order of complexity of the program

was not a viable option during this thesis cycle. Additional problems were noted in the

granularity of the rendered data set. Again, as the resolution of the data set was

increased, the time required for MAP to process the data increased. VIPER requires

approximately 20 minutes to generate the final images with 250 planes in the data grid.

The highly irregular nature of the data also proved troublesome to the volume render

as it tried to generate a smooth shell from the data. In some cases, data in adjacent

cells varied as much as 180 dBsm.

3.4 Summary.

In this chapter I presented the results of the particle system renderer and the

volume renderer. The images for both systems were derived from the same initial data

set. The final set provided to the volume renderer was somewhat smaller due to time

constraints. The particle system renderer was able to handle the larger data set,

eliminating the requirement for filtering altogether. The volume renderer required

careful selection of the filter limits through trial and error to produce an acceptable

image that compromises resolution and time.

The results of this study indicate that although some work is still required to improve

the performance of the 3D rendering systems, the provide a useful tool in the display of

RCS data. The next chapter discusses the overall conclusions for this effort, and

provides some direction for future work in this area.

21

Figure 5. W Polarity Unfiltered Data Viewed From the X axis

Figure 6. W Polarity Unfiltered Data Viewed From the Y axis

22

u 7
ge 8

N23 - e

F 9. a

UI

Figure 11. Crosspole Unfiltered Data Viewed From The X Axis

Figure 12. Crosspole Unfiltered Data Viewed From The Y Axis

25

Figure 13. Ciosspole Unfiltered Data Viewed From The Z Axis

Figure 14. Multi-polarity Data Vlewed From The X Axis

26

Figure 15. Muti-polarity Data Viewed From the Y axis

Figure 16. Multi-Polarity Data Viewed From the Nose

27

Figure 17. MuNti-Polarity Data Viewed From the Tail

Figure 1. MuNi-Polarty Data Viewed On Sony PVM-2030 Monitor

28

Figure 19 Muli-Polaity~ita. Viewe On Sqar .. •jm

Fiur 2 0 MliPfryV ERaw qe- ViwdFo-teXai

St29

* r,.. If

Figure 2 1. Multi-Polarity VIPER Image Viewed From the Y axis

Figure 22. Multi-Polarity VIPER image Viewed From the Z axis

30

IV. CONCLUSIONS.

The first three chapters of this thesis present the rationale and details involved in

applying state-of-the-art graphics rendering techniques to RCS data. In this chapter I

assess the results of each of the methods examined. I will also address areas of

future work.

4.1 Particle Systems.

The particle system renderer is able to handle large data sets with a minimum of

modification. Even with the large data sets, after the initial data files are read into

memory, frames are generated at a rate of one frame every forty seconds. The particle

system also displays the data as a series of discrete points without any interpolation of

the data. This precludes any aliasing that might be generated by interpolating the

values into a surface. Performance of the particle rendering system was inversely

related to the size of the data file. As the size of the data file grew, the amount of time

required to process the data grew in a linear fashion. The image quality of the

rendered data set was exceptional on the workstation monitors, and good on the NTSC

monitors. Although some data was obscured when viewing the static images, the

animated sequences eventually displayed all of the original data through rotation

around the different axis. The use of primary colors as the basic color set was well

received by the users, even on the recorded images [RTF 92]. The users also felt the

infinite tail length gave them a better feel for the vectorized property of the data, while

displaying the data as a cloud of discrete particles was not considered intuitive to the

nature of the data [RTF 92]. The addition of the slaved icon to the image significantly

aided the viewer in conceptualizing the mapping of the data back to the original target

shape.

Some of the disadvantages seen in the particle system renderer were the lack of

real time manipulation, and the reliance on additional equipment for support of the

31

animation. Although the animated sequences were well received, the still images were

considered informative, but not as useful. Another disadvantage of the particle system

renderer was the large data files generated by the preprocessor. Because of the

general nature of the particle rendering system, a large amount of overhead was

generated in the form of tokens or place holders to set the characteristics for each of

the particles. Additionally, rendering very large systems (those in excess of 10 million

data points) was limited by the available swap space and memory of the workstation.

Although this problem was resolved by moving to another platform, it has the potential

to limit the user's applications.

4.2 Volume Rendering Systems.

The volume renderer provided the user a different view of the same data set. The

preprocessing performed by MAP allowed the generation of a uniformly spaced data

set displaying surfaces instead of discrete points. Some users were more comfortable

viewing the data as a series of transparent shells rather than as discrete points, and

this rendering method gave them a better insight into the data. Data in the foreground

of the image was clear, but data located toward the middle and back of the volume was

obscured or lost. The overall quality of the image was lower than that provided by the

particle system, and automated production of multiple frames was not well supported.

Use of primary colors for the surfaces provided good distinction between different

surfaces to the user, but the transparency was sometimes confusing.

The major disadvantages to the use of volume rendering for the display of RCS data

are the significant time required for the preprocessing of the data, the coarse

granularity of the final image, and like the particle system, the lack of a means for the

real-time manipulation of the data and the view. It was not uncommon for a data set

containing as few as 1000 data points to require in excess of 800 CPU minutes to run.

32

Even as a low-end prototype system, this was not considered acceptable. Additionally,

as we tried to increase the resolution of the final image, the preprocessing time also

increased exponentially. With only 100 planes of resolution for the final image, the

granularity of the image made it difficult to use and interpret. With the current volume

renderers in place in the AFIT Graphics Lab, we require a significant amount of CPU

time to generate low quality, low resolution images without the benefit of real-time

manipulation.

4.3 Future Work.

Several improvements can be made to the systems to increase their ease of use,

and resulting images. The volume renderers can best be improved by altering the

front-end processor MAP. Alternative algorithms such as kriging should be examined

as a possible alternatives to the trilinear interpolation. Additionally, alternate volume

rendering techniques that do not require regularly spaced input data should be

examined for use with multi-polar vectorized data. The user should also have the

ability to examine all four polarities of the data while manipulating the final image in

real-time. This could be accomplished by distributing the rendering process over

multiple processors. Finally, the volume renderer chosen should have the capability of

rendering an icon or core to represent the orientation of the data being rendered.

Future work for the particle system renderer includes optimization of the renderer for

multi-polar vectorized data as a method to increase performance. Reduction of the

number of ASCII tokens in the data file would be a significant speedup. Distributing the

frame calculations over several processors, using a separate processor for each

centroid rendered should also provide a linear improvement in performance. Phase

information is currently ignored by both renderers, and should be incorporated into the

final image. Methods for incorporating the information include alteration of color

intensity or the tint (base values) of the colors to show differences in phase. Finally,

33

additional filtering techniques, such as the sector averaging technique [Swe 92] should

be examined for reducing the size of the data set without compromising the integrity of

the original data. Both particle system renderers and Volume renderers have shown

promise for the visualization of multi-polar vectorized data, and future research into

these techniques is warranted.

34

Appendix A. Data Preprocessor Users Guide.

A. I Introduction

The filter designed to read the data produced by the RCS-BSC code is a general

purpose high pass filter, low pass filter pair. There are currently two versions of the

filter available to the user, PSRFilter and MAPFilter. PSRFilter was designed for use

with the particle system renderer PSR, while MAPFilter was designed for use with the

Volumetric Imaging Program for Engineering Research (VIPER) and its preprocessor,

MAP.

This User's guide outlines the installation of the filters on a typical computer system,

and provides pointers for modifying the Makefile for installation on systems other than

the Silicon Graphics Workstations running the Unix operating system. The filters were

written to be system independent C++ routines, with changes to the compilation flags

the only requirement for system conversion.

A.2 Installing The Filter

The filter requires compilation of a single file to generate an executable image. The

file Makefile is located in -dtisdale/thesislpsrlcnv to generate the executable file. The

Unix command line is simply make PSRFilter or make MAPFilter. This assumes you

are building the filter on a Unix machine. If your system does not use the AT&T C++

compiler, then you must modify two lines in Makefile. The first modification is to the

line containing the symbol definition

CC = CC.

You must modify this line to read

CC = <your compiler name>

The second modification is to the flags line. The line is

35

CFLAGS = g

The CFLAGS must be set to any compiler flags your system requires. Additionally, the

file requires linking to the C++ math library. If this library is not in the default path for

the compiler, it must be added. The -L make option is required to add a library search

path.

A.3 Using the Filter.

Using the filter is a straight forward procedure requiring the proper RCS-BSC data

files and a few user supplied parameter values. The two data files required by the filter

are the RCS-BSC data files for the top and the bottom of the object scanned.

A.3.1 Command Line Entries

The command line entry for PSRFilter is

PSRFilter -option

The -option allows the user to specify the data files, the output file, and the filter

thresholds. The -t option allows the user to specify the path and name of the data file

containing the description of the top of the object scanned. The -b option allows the

user to specify the path and name of the data file containing the bottom of the object

scanned. The -o option allows the user to specify the name of the output file. The -f

option allows the user to specify the upper threshold of the notch filter, and the -n

option allows the user to specify the lower threshold of the notch filter. The command

line is parsed by the filter, and error messages will be generated if problems occur.

A.3.2 Differences for MAPFilter.

MAPFilter differs from PSRFilter in that more output files are generated. MAPFilter

produces x.dat, y.dat, z.dat, i.dat, and d.dat. The separate files provide the user with

the flexibility in setting up the input files for MAP. The version of MAP modified for this

thesis is expecting two binary data files. The first file contains the index information,

36

and the second file contains the data values for each index location. To create the files

required by MAP, use the Unix cat command as follows:

cat i.dat x.dat v.dat z.dat > index.dat

The order of the first four files is critical for the proper operation of MAP. The name of

the output file is not critical, and is specified by the user. The two files index.dat (or the

data file specified by the user with cat) and d.dat are required for input to MAP.

A.4 Conclusion.

In developing the filter, I have tried to produce a flexible tool which can be quickly

adapted to changing requirements. The user specified options allows fast modification

of the filtered data without the need for editing and recompilation. Modifications to the

output format should be documented in the code, and new versions of the software

created.

37

APPENDIX B Usina PSR.

B.1 Introduction.

The Particle System Renderer PSR is a general purpose system for the generation

of particle systems. Although features were added for support of RCS data rendering,

it remains a flexible utility.

B.2 Installing.

PSR requires the Utah Raster Toolkit version 3.0 to install and run properly.

Contact the system manager for the location of these libraries if they are not available.

The routines are public domain, and are required to generate the RLE files produced

by PSR.

B.3 Using PSR.

Some of the features of this system include randomly generated particles about a

centroid, user defined particles, and particle spawning. All particle systems are

generated from a centroid. The shape of the centroid can be selected by the user. The

placement (origin) of the centroid is specified by the user in world (Cartesian)

coordinates. The particle system uses spherical coordinates to define particle

placement. This feature allows for easier placement of particles around a spherical

base. The origin of the particle is defined by its relationship to the centroid, and is

translated by the origin of the centroid before rendering. The spherical coordinate

system can be over-ridden by an option in the data file.

Particles and centroids are stored in a dynamic linked list. For each time step, the

list is first checked for new particles being spawned. The new particles are generated,

and added to the list structure. The list is then checked for particles which have died.

Dead particles are marked as such, and no longer displayed. The view volume

requires specification of a viewers position, where the camera is looking, a view plane

38

normal, and a view up vector. The user must also specify viewport dimensions for

rendering, and world limits (including front and back) for clipping. This section will

describe the features of the particle renderer, and explain how they affect the overall

picture.

B.3.1 Centroids.

This section will describe the centroid class, and the features which affect the final

product.

B.3.1.1 Axis.

The axis system of the centroid can be specified as having either cartesian or spherical

coordinates. The axis defines the base coordinate system of the centroid. The

keywords cartesian or spherical will follow the token centroid.

B.3.1.2 Shape.

The centroid shape will contain one of an enumerated type. Currently, only spherical

shapes are supported, but the parser will accept sphere, cube, or plane following the

token shape.

B.3.1.3 Color.

The color of the centroid is held here. Color is specified by and rgb triple with values

between zero and one. The rgb triple is specified immediately following the token

color.

B.3.1.4 Diameter.

The centroid diameter is the size of the centroid. This value specifies the diameter for

spheres, the side length for cubes, and the side length for planes. A single float value

is specified after the token diameter.

B.3.1.5 Origin.

This variable defines the center of the centroid at the beginning of its life. Currently,

this value does not change during the life of the system. The triple specifying the origin

39

of the centroid follows the token origin. The coordinate system of the origin was

specified after the token centroid.

B.3.2 Particles.

This section will describe the attributes of the particle class which are important to the

end user. The data entries for a particle will start with the token particle or the token

generate.

B.3.2.1 Color.

As with the centroid, this variable describes the color of the particle as an RGB triple.

The token color is followed by the rgb triple.

B.3.2.2 Diameter.

Diameter is a hook to allow particles of different sizes to be rendered. It will be used to

describe the width of the drawn line. This feature is not currently implemented.

B.3.2.3 Origin.

The particle's origin is in relation to the center of the centroid, it is defined in the

centroid coordinate system. In other words, for spheres, the particle's origin will be

define using phi, theta, and radius, while Cartesian (XYZ) coordinates will be used for

all other centroid shapes. The triple defining the origin immediately follows the token

origin.

B.3.2.4 Fade Time.

This hook will be used to fade out the tail of a particle after its death. The purpose of

this feature is to keep particles from just winking out and destroying the realism of the

scene. This feature is not yet implemented.

B.3.2.5 Tail Length.

Tail length is the maximum length of the particle's tail. This feature prevents particles

from leaving a permanent trace if used. Default tail length is -1. A negative tail length

40

signals the system to ignore this feature. The length of the tail is specified as a float

immediately following the token tail.

B.3.2.6 Direction.

Original used in conjunction with the velocity, this attribute helped specify the particle's

movement. This feature is obsolete.

B.3.2.7 Time of Death.

This feature allows the user to specify the time at which a particle dies. The time is

relative to the particle's creation, not system time. The time of death is specified in

seconds following the token death.

B.3.2.8 Time of Spawn.

This feature allows the user to specify when to spawn a new particle system from the

particle. The new system has it's origin at the current position of the particle spawning

it. Time is relative to the creation of the parent particle, not system time, and is

specified immediately after the token spawns.

B.3.2.9 Spawn From.

This feature will allow the user to specify either a file to be used for the information

required to spawn a new system, or tell the system to generate the particles based on

some minimal information. The token from follows the time value to specify the source

of the data to generate the spawned system. The acceptable tokens are generate for a

randomly generated system, or read for input from a new file. Currently, this feature

only supports randomly generated spawned systems.

B.3.2.10 Velocity.

Velocity is specified as either a Cartesian(XYZ) or spherical value. Currently only

linear movement is supported by the system. The velocity triple follows the token

velocity.

41

B.3.2.11 Intensity.

A modifier for the particle's intensity. This token will take a float value in the range zero

to one. I see no real use for this feature, but left the "hook" in case somebody else

might find it useful.

B.3.3 The Environment.

Although some of these features have already been mentioned, this section will discuss

some of the user controllable features of the environment.

B.3.3.1 Ambient Color.

The ambient color is another name for background color in the particle system. It is

also defined by an RGB triple. The default color for the background is black.

B.3.3.2 Viewport.

The viewport for display is defined as two min/max pairs of integers. Remember, the

viewport is inclusive, that is a min of zero and a max of ten is eleven pixels wide.

B.3.3.3 World.

The world is the limits of the particle system for clipping. Again, a min/max integer pair

is specified for the world's limits. Additionally, a front and back clipping plane are

required.

B.3.3.4 View.

Again, the view is defined by the camera position, the center of interest, a view plane

normal, and a view up vector. Intimate knowledge of the right-hand rule is

recommended before changing these values.

B.3.3.5 Time Increment.

The system allows the user to specify both the time increment and the length the

system will run. It is recommended that the user use a large step value and a small

duration when initially rendering images. Time is defined in seconds or fractionr of

seconds. The step variable allows the use to set the step size for the time increment.

42

The seconds can be used to specify the number of seconds the system will run, while

the step variable specifies a specific number of steps to execute for.

B.3.3.6 View Changes.

The user can change the view after the system has grown for the specified number

of steps. The change in view is started with the keyword change. This keyword is

followed by the change in view. The change in view is specified by the starting

viewplane normal and view up vectors (svpn and svup). If these values are not

specified, the current values for VPN and VUP are used. The user also specifies the

finishing VPN and VUP using the tokens fvup and fvpn. The token freeze on the line

indicates the system will not grow during the view change. The tokens step, seconds,

and for are once again used to specify the time or number of frames to use for the

change in view.

B.3.4 Implementation.

This section describes how to use the system, and what is required for the data and

control files.

B.3.4.1 File Formats.

This system does not require file suffixes, nor does it append them. It is recommended

that the user use the .con suffix for control files and .dat for data files. The control file

format is shown in table 1 and the data file format is shown in table 2. The output file

will be given an extension indicating the frame number. For example, if the user

chooses the output file name rcsl, the first file created will be rcs1.1, the second file

will be rcs1.2, etc. until the last frame is generated.

B.4 Sample Control File.

The following control file sets up the initial view for a series of frames to be

transferred to video tape. The viewport size is correct for conversion to an NTSC

monitor, and the view parameters set up the initial view, then rotate for a total of 360

43

degrees on two of the three axis. The rotation on each axis is split into four pieces to

insure a smooth rotation in the proper direction.

viewport 0 643 0 485 world -320 320 -240 240
position 0.0 0.0 350.0 coi 0.0 0.0 0.0 vup 0.0 10.0 0.0 vpn 10.0 0.0 0.0 clip 300.0 -400.0
step 0.06 for 25
change freeze frames 50 rotate fvup 0.0 0.0 10.0 fvpn 10.0 0.0 0.0
change freeze frames 50 rotate fvup 0.0 -10.0 0.0 fvpn 10.0 0.0 0.0
change freeze frames 50 rotate fvup 0.0 0.0 -10.0 fvpn 10.0 0.0 0.0
change freeze frames 50 rotate fvup 0.0 10.0 0.0 fvpn 10.0 0.0 0.0
change freeze frames 50 rotate fvup 0.0 10.0 0.0 fvpn 0.0 0.0 10.0
change freeze frames 50 rotate fvup 0.0 10.0 0.0 fvpn -10.0 0.0 0.0
change freeze frames 50 rotate fvup 0.0 10.0 0.0 fvpn 0.0 0.0 -10.0
change freeze frames 50 rotate fvup 0.0 10.0 0.0 fvpn 10.0 0.0 0.0
change freeze frames 50

Line Keywords Description
1 viewport <xmin> <xmax> <ymin> <ymax>

world <xmin> <xmax> <ymin> <ymax>
2 position <x> <y> <z>

coi <X> <y> <Z>
vup <x> <y> <z>
vpn <x> <y> <z>
clip <front> <back>

3 step <step size>
seconds <duration in seconds>
for <duration in number of steps>

4+ change "Indicates change in view"'
freeze "Stop system growth during view change"
rotate "Rotate view using vup, vpn"
svup <start x> <start y> <start z>
svpn <start x> <start y> <start z>
fvup <finish x> <finish y> <finish z>
fvpn <finish x> <finish y> <finish z>
step <set step size>
seconds <duration of change in seconds>
for <number of steps>

Table 1. Control File Syntax

44

Line K-ywords Description
1 centroid {spherical, cartesian)

shape {sphere, cube, plane)
diameter <size of centroid>
color <r> <g>
origin <location of centroid>

2+ centroid {spherical, cartesian)
shape {sphere, cube, plane}
diameter <size of centroid>
color <r> <g>
origin <location of centroid>

2+ generate "Generate Particle List"
number <base> <variation>
system {spherical, cartesian)
color <r> <g> <variation>
type { spherical, cartesian I
velocity <x> <y> <z> <variation>
tail <base> <variation>

death <base> <variation>
2+ particle "Generate Particle List"

system {spherical, cartesian}
origin <location of centroid>
color <r> <g>
velocity <x> <y> <z>
length <tail length>
dies <time of death>
spawns <time of spawn>
from {generate, read}
type Ispherical, cartesian }

Table 2. Data File Syntax

B.5 Sample Data File.
centrold spherical shape sphere diameter 0 color 0.2 0.2 0.7 origin 2.0 55.2 1.0

particle origin 0.0 0.0 0.0 dies 2.2 spawns 2.2 from generate velocity 0.2 49.4 0.3 type cartesian color 0.9 0.05 0.01 length 22.5

generate number 15000 45 velocity 20.85 15.7 150.82 70.35 color 0.0 0.6 0.05 0.13 tail 25.5 3.25 death 0.7

cenftrod spherical shape sphere diameter 0 color 0.2 0.2 0.7 origin 2.0 25.2 41.0

particle origin 0.0 0.0 0.0 dies 2.0 spawns 2.0 from generate velocity -2. 32.4 -0.3 type cartesian color 0.9 0.05 0.01 length 22.5

generate number 15000 45 velocity 20.85 15.7 150.82 70.35 color 0.80 0.06 0.05 0.13 tail 45.5 3.25 death 1.2
centrold spherical shape sphere diameter 0 color 0.2 0.2 0.7 origin 92.0 155.2 10.0

particle origin 0.0 0.0 0.0 dies 1.5 spawns 1.5 from generate velocity 8. 22.4 5. type cartesian color 0.9 0.05 0.01 length 32.5
generate number 15000 45 velocity 20.85 15.7 150.82 70.35 color 0.02 0.06 0.805 0.13 tail 25.5 3.25 death 0.5

45

B.6 Command Line Options.

PSR has a few command line options the user should be familiar with. The first

command option is the -d option. This option is used to specify the path and name of

the data file. The -c option allows the user to specify the path and name of the

command file. The -o option allows the user to specify the name of the output file. The

output file name should not have an extension, PSR appends the frame number to the

end of the file name. The final option is the -i option. This allows the user to set the

information level. Information levels range from 0 to 4, with 0 being minimal

information, and 4 being debug level information. If these parameters are not supplied,

default values will be used. The default information level is 1, the default data file is

testl.dat, the default output file is temp, and the default control parameters are

internally set. A sample command line entry might be:

psr -d ../cnv/rcsl.dat -c ..Irc.con -o Ileo2/deflrcsl -i 2

B.7 Summary.

This particle system renderer (PSR) generates images using a Z-Buffer and Wu anti-

aliased lines. It generates either static or random particle systems, as determined by

the users. t.though it still has room for improvement, I believe it represents a pretty

good first cut. It was a valuable learning experience developing a system from scratch

without any hard guidelines or restrictions. With a little more effort, I believe PSR will

be a valuable commodity for the graphics department at AFIT.

46

Appendix C. Using VIPER and MAP

CA Introduction

Both VIPER and MAP are the results of previous thesis work at AFIT. VIPER was

modified by Lentz in support of his thesis effort, and I modified MAP to work with

volumetric RCS data. The version of the software installed in the subdirectories in my

thesis area. This appendix explains the installation of the software and adjusting the

run time parameters.

C.2 Software Installation

Before using either VIPER or MAP, they will need to be installed on the system you

are using. If the source is no longer available on the system, then contact the system

administrator for a copy of the backup containing this thesis effort. Makefiles are

located in each of the required directories for rebuilding the software. MAP is located

in the directory MAP. The makefile is setup for the AT&T C++ compiler. The Unix

command make will build the software for you. The source for VIPER is located in the

directory VIPER. Again, a makefile in the directory is setup to build VIPER on a Unix

system using the AT&T C++ compiler. VIPER requires the Utah Raster Toolkit to install

successfully. If the toolkit is not installed on the system, contact the system

administrator.

C.3 Running MAP.

Running MAP first requires establishing a configuration file with the required runtime

parameters. The map program creates a rectangular grid, and samples input data from

the files specified in the configuration file. The program will build a grid of variable, or

constant plane spacing, and create an output file conforming to VIPER's input

requirements.

47

Two sampling methods are offered; A-Buffer, and Z-Buffer. If A-Buffer is chosen,

either a density weighting, or a Gaussian filter can be specified.

The program expects the grid input file structure in the form used by the

Computational Fluid Dynamics Group at WPAFB. These grids come in two files: one

for the grid indices, and one for the grid data. The first line of the index file contains

the number of data points, followed by the x indices, the y indices, and then the z

indices. The data file contains the data points in the index order. Both files are in

binary format.

The -f option is the only command line option available with the map program. It

forces the program to maintain the input data coordinate ranges when using the

variable spaced method for plane construction.

The user configurable parameters for the program should appear in the

configuration file. The parameters are listed below in the order expected by the map

program. Each parameter is briefly explained, and a sample configuration file is given

later.

C.4 USER CONFIGURABLE PARAMETERS

I The input grid index file (paths acceptable)

2 The input grid data file (paths acceptable)

3 The output rectangular grid file name (paths acceptable)

4 A "1' or *0' for carving the input grid. A '1' means carve the grid, a '0' means do

not carve the grid. If carving the grid, the next six lines of the configuration file

should have the i, j, and k lower and upper bounds, (one bound per line, in the

given order).

48

5 A '1' or '0' for the viewing parameter. A '1' means view pressure numbers, a V0'

means view mach numbers.

6 A '1' or '0' for the number of planes to use in constructing the grid. A 1' means

use the default (100 per axis), a V0' means other values are specified. If other

values are used, all three should appear on the next line (x, y, and z).

7 A '1' or '0' for plane spacing method. A '1' means use constant spacing, a '0'

means use variable spacing.

8 A "1' or "0' for the sampling method. A "1' means use Z-buffer, a '0' means use A-

Buffer.

9 A floating point value for the filter radius multiplier.

10 If a-buffer sampling was selected, a '1' or '0' to specify the filtering function. A '1'

means use the Gaussian filter, a '0' means use the density weighting filter.

11 If the Gaussian filter is used, a floating point number for the number of standard

deviations spanning the filter radius.

C.5 MAP EXAMPLE

Running MAP is as simple as typing:

map -f map1 .cfg

SAMPLE CONFIGURATION FILE MAP1.CFG

lusr/eng/dtisdale/thesis/psr/cnv/rcsi.dat * The input grid index file
lusr/engldtisdalelthesis/psr/cnvld.dat * The input grid data file
rcs2.bin * The grid output filename
0 * Indicates do not carve the grid
0 * Produce a mach shell grid
1 * Use the default number of planes
0 * Use variable plane spacing method
0 * Use the A-buffer sampling technique
1.1 * The filter radius multiplier
0 * Use the density weighting function

49

C.6 Using VIPER

Using VIPER is straightforward, requiring a properly formatted data file. MAP

generates the proper data file format for the user, alleviating this potential problem.

VIPER does require that you use a rectangular grid of data points. Again, MAP

generates a rectangular grid of data for the user. Failure to use rectangular grid will

generate unpredictable results. The command line for VIPER allows one of two use

options. The -k option will place the image in the lower left corner of the screen, while

the -c option places the image in the center of the screen. These options are affected

by the version of the RLE display routine being used, and the version of the operating

system. Although VIPER still requires the command line parameter, the 3.0 version of

the Utah Raster Toolkit contains a get4d command that allows the user to specify the

location of the image. The VIPER command line is:

viper -option input output

The input option is the name of the properly formatted input file. The output option is

the name of the output file. The output file name should have a rle extension. When

VIPER starts, it will prompt the user for the configuration parameters. The next section

describes the configuration entries.

C.6.1 Feedback.

This value determines if VIPER will provide feedback during the image generation.

Feedback is in the form of an asterisk (*) printed for each data value read. I strongly

recommend not using this option. For large data files, this option will significantly

increase the execution time of VIPER.

50

C.6.2 Scaling.

This option allows you to set the scaling factors for the x, y, and z axis. For most

cases, use a scale factor of 1.0. This renders the image in the original volume. If the

scale factor entered is not the same for all three axis, the image will be distorted.

C.6.3 Volume Trimming.

This option allows you to trim off portions of the data volume. To decline this option

enter a 0. If you enter a 1, you will be prompted for information regarding trimming

each of the six faces. This option was not used with the RCS data.

C.6.4 Object Distances.

These options allow you set the distance from your eye to the center of the view

volume, and your eye to the viewing plane. I have found that using the volume size

plus 1 is a good start for the distance to the center of the view volume, and I is a good

distance to the viewing plane.

C.6.5 Data Orientation.

The next series of prompts allows the user to change the orientation of the data. For

the initial run, set all three rotations to 0. Then, on subsequent runs, I suggest rotating

on one axis at a time to get a better feel for the data set.

C.6.6 Changing the View Plans Dimensions.

The next question asks if you wish to change the screen size. If you enter yes, you

must enter the new horizontal and vertical measurements for the screen. The units are

in pixels for this option.

C.6.7 Ambient Light Level.

This option asks the user for the ambient light in the volume. This light is in addition to

any of the light sources specified later. A value of 0.8 seems to work well for RCS data.

51

C.6.7 Number of Light Sources.

The next prompt is for the number of light sources. The user must enter a number

between I and 6. Initially, the user should use a single light source. You will then be

asked for the location of each light source requested. Remember, your eye is at the

origin for the light specification, and the location of the light source is relative to the

viewer, not the volume.

C.6.8 Target Values.

The system will then ask you for the number of target values to find. For RCS data,

enter 3 to find the contribution of all four polarities. For each of the target values

specified, you will be prompted for the target value, the variance, the RGB triple

associated with the value, and its opacity. For the RCS model, use the value 50, 150,

and 200 for the target values. A variance of 8 to 12 will yield good results. For the

RGB triples, I stayed with the primary colors, using 0.8 for the dominant color, and 0.2

for the minor colors

C.6.9 Border Matte.

The final question prior to rendering will be the color of the border matte. This is mainly

an esthetic issue, and the value is up to the user. A good neutral blue could be

specified by 0.2 0.2 0.4.

C.6.10 Repeating the Session.

After the image is rendered, the system will ask you "One more time?". This option

allows you to render another image without reloading the data set. This can be time

saving for large data sets.

C.7 Sample Command Line.

Although there is extensive interaction once VIPER starts, the command line for

invoking it is very simple. A typical command line might be:

viper -k rcs2.bin

52

C.8 Summary.

MAP and VIPER are both useful tools for the display of volumetric data. VIPER is

restrictive in that it requires regularly spaced data for input. MAP will convert

irregularly spaced data to a rectangular grid using trilinear interpolation. Both tools are

fairly well documented, and straightforward in their use.

53

BIBLIOGRAPHY

[Bal 89] Balanis, Constantine A. Advanced Electromagnetic Engineering. New
York:John Wiley & Sons, 1989.

[Bri 88] Bridges, Capt D. Volumetric Rendering Techniques for the Display of Three-
Dimensional Aerodynamic Flow Field Data. MS Thesis, Air Force Institute of
Technology, December 1988.

[Cli 88] Cline, H.E., Lorensen W.E., Ludke S., Crawford,C.R., and Teeter, B.C., 'Two
Algorithms for Three-dimensional Reconstruction of Tomograms," Medical Physics,
15(3):320-327 (May/June 1988).

[Eko 91] Ekoule, A., et al. "A Triangulation Algorithm from Arbitrary Shaped Multiple
Planer Contours," ACM Transactions on Graphics, pages 182-199 (April 1991).

[Fol 90] Foley, James D., et al. Computer Graphics, Principles and Practice. Reading
Massachusetts: Addison-Wesley, 1990

[Kau 91] Kaufman, Arie, Volume Visualization, IEEE Computer Society Press, Los
Alamitos, California, 1991.

[Kor 83] Korein, Jonathan and N. Badler, Temporal Anti-aliasing in Computer
Generated Animation, SIGGRAPH, 1983, Volume 17:377-388 (1983)

[Lan 79] Lane, J. and L. Carpenter, A Generalized Scan Line Algorithm for the
Computer Generation of Piecewise Polynomial Surfaces, Computer Graphics and
Image Processing, 1979, Volume 11, pp. 290-297

[Len 89] Lentz, Capt P. Sampling Data Onto Rectangular Grids For Volume
Visualization. MS Thesis, Air Force Institute of Technology, December 1989.

[Mar 90] Marhefka, R.J. Radar Cross Section - Basic Scattering Code, RCS-BSC
(Version 2.0) User's Manual. ElectroScience Laboratory, The Ohio State University,
Department of Electrical Engineering, Columbus, Ohio 43212, 1990.

[Mey 91] Meyers, D. et al. "Surfaces From Contours: The Correspondence and
Branching problem," Proceedings of Graphics Interface '91, pages 246-254 (June
1991)

[Par 82] PARAMOUNT," Star Trek II: The Wrath of Khan, June 1982

54

[Pon 92] Pond, Capt D. A Synthetic Environment for Satellite Modeling and Satellite
Orbital Motion. MS Thesis, Air Force Institute of Technology, December 1992.

[Ree 83] Reeves, William T., Particle Systems - A Technique for Modeling a Class of
Fuzzy Objects, SIGGRAPH, 1983, Volume 17:359-376

[Ree 85] Reeves, William T. and R. Blau, Approximate and Probabilistic Algorithms for
Shading and Rendering Particle Systems, Proceedings of SIGGRAPH '85, 19(3):313-
322 (July 1985)

[RTF 92] Conversations with the Radar Engineers at the Radar Test Facility, Tyndall

AFB FL, May 1992.

[Smi 82] Smith, Alvey Ray and others, GENESIS DEMO DOCUMENTARY, June 1982,

[Sti 83] Stimson, George W., Introduction to Airborne Radar, Hughes Aircraft Company,
El Segundo, California, 1983

[Sty 91] Stytz, Martin R. et al. Three-Dimensional Medical Imaging: Algorithms and
Computer Systems, ACM Computing Surveys, 23(4):421-499 (December 1991)

[Swe 86] Sweetman, Bill StealthAircraft, Motorbooks International Publishers &
Wholesalers Osceola Wisconsin, 1986

[Swe 92] Swerling,P. "Sectorized Statistical Target RCS Characterizations," Course
Handout for WENE 445, Low Observables, (original Dated July 13, 1992) 1992.

[Tho 86] Thomas, Spencer. Design of the Utah RLE Format. University of Utah,
Department of Computer Science, 1986.

[Udu 91] Udupa, J. and G. Herman, 3D Imaging in Medicine, CRC Press, Boca Raton
Florida, 1991.

[Ups 88] Upson, C and M. Keeler, V-BUFFER: Visible Volume Rendering, SIGGRAPH,
1988, pp. 59-64

[Woj 92] Wojszynski, Capt T. Scientific Visualization of 3D Radar Cross Section Data.
MS Thesis, Air Force Institute of Technology, December 1992.

[Wu 91] Wu, Xiaolin, An Efficient Anti-aliasing Technique, Computer Graphics, July
1991

55

Vita

Captain David J. Tisdale was born on November 4,1961 in Vallejo California. He

graduated from Beaver Local High School in Lisbon, Ohio in 1979, then entered the

United States Air Force Academy. He graduated in 1983 and received a Bachelor of

Science in Computer Technology. His first assignment was to the 31 st Student

Squadron in Columbus, Mississippi. In 1984 he was assigned to the 83rd Fighter

Weapons Squadron at Tyndall Air Force Base, Florida were he worked as the

Database administrator for the Weapons System Evaluation Program. In June, 1985

Capt Tisdale transferred to the 4484th Test Squadron at Tyndall Air Force Base in

Florida. He worked there as a computer systems engineer until May, 1991. In May

1991 he entered the School of Engineering, Air Force Institute of Technology to pursue

a Master of Science Degree in Computer Engineering.

Permanent address:

14637 Avalon Avenue

Baton Rouge, Louisiana

70816

56

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

PuObic reporting burden for this collection of information is estimated to axverage .our per ,esponse. ncluding the time for reviewing instructions. searcfhing existing data sources,.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of intormation, including suggestions for reducing this ourcden, to Washington Headquarters Services. Directorate tor information Operations and Reports, 1215 ;etferson

Davis Highway. Suite 1204. Arlington. JA 22202-4302. and tO the Office of Management and Sudget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1992 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

METHODS FOR VIEWING RADAR CROSS SECTION
DATA IN THREE DIMENSIONS

6. AUTHOR(S)

David J. Tisdale, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/92D-18

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Radar Cross Section data is an important factor in the des,ýgn of modern fighter and bomber aircraft. Minimiza-
tion of the reflected radar energy is one of the key issues when choosing shapes and materials in new aircraft.
Visualization of the energy scattered back to a radar is neither intuitive nor easy. The mission planner and
pilot need to gain an understanding of the vulnerabilities inherent in the design of the systems they use. The
advent of relatively low cost graphics workstations has made their use affordable in applications inconceivable
only a few short years ago. This thesis examines three graphics rendering techniques and their applicability to
the display of three-dimensional radar cross section data. This study looks at three tools, PSR, a particle system
renderer; the Satellite Modeler, a three-dimensional surface renderer; and VIPER, a volumetric renderer for their
applicability, utility, and ease of use in the display of radar cross section data. Each of the systems was tested
using the same data set, and the results compared later in this treatise. Although the purpose of this study is
to determine the applicability of different techniques, the results can be used to further develop fast, efficient
rendering systems for the visualization of radar cross section data.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Graphics, Multi-polarity Vectorized Data, Scientific Visualization 66
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Stanaard Form Z98 (Rev 2-89)
b"¶~ y ASNSI ;Wd 39. 4

